Projection of vector $\vec A$ on $\vec B$ is

  • A

    $\vec A.\vec B$

  • B

    $\vec A.\hat B$

  • C

    $\vec B \times \vec A$

  • D

    $\hat B.\hat A$

Similar Questions

If $\left| {\vec A } \right|\, = \,2$ and $\left| {\vec B } \right|\, = \,4$ then match the relation in Column $-I$ with the angle $\theta $ between $\vec A$ and $\vec B$ in Column $-II$.

Column $-I$ Column $-II$
$(a)$ $\left| {\vec A \, \times \,\,\vec B } \right|\, = \,\,0$ $(i)$ $\theta = \,{30^o}$
$(b)$ $\left| {\vec A \, \times \,\,\vec B } \right|\, = \,\,8$ $(ii)$ $\theta = \,{45^o}$
$(c)$ $\left| {\vec A \, \times \,\,\vec B } \right|\, = \,\,4$ $(iii)$ $\theta = \,{90^o}$
$(d)$ $\left| {\vec A \, \times \,\,\vec B } \right|\, = \,\,4\sqrt 2$ $(iv)$ $\theta = \,{0^o}$

Show that the area of the triangle contained between the vectors $a$ and $b$ is one half of the magnitude of $a \times b .$

Explain the geometrical interpretation of scalar product of two vectors.

The angle between the two vectors $\overrightarrow A = 5\hat i + 5\hat j$ and $\overrightarrow B = 5\hat i - 5\hat j$ will be ....... $^o$

The area of the triangle formed by $2\hat i + \hat j - \hat k$ and $\hat i + \hat j + \hat k$ is