Projection of vector $\vec A$ on $\vec B$ is
$\vec A.\vec B$
$\vec A.\hat B$
$\vec B \times \vec A$
$\hat B.\hat A$
$A\,\cos \,\theta = \frac{{\vec A.\vec B}}{{\left| {\vec B} \right|}} = \vec A.\hat B$
Which of the following is not true ? If $\overrightarrow A = 3\hat i + 4\hat j$ and $\overrightarrow B = 6\hat i + 8\hat j$ where $ A$ and $B$ are the magnitudes of $\overrightarrow A $ and $\overrightarrow B $
If $\vec A,\vec B$ and $\vec C$ are vectors having a unit magnitude. If $\vec A + \vec B + \vec C = \vec 0$ then $\vec A.\vec B + \vec B.\vec C + \vec C.\vec A$ will be
If the projection of $2 \hat{i}+4 \hat{j}-2 \hat{k}$ on $\hat{i}+2 \hat{j}+\alpha \hat{k}$ is zero. Then, the value of $\alpha$ will be.
Confusing about what to choose? Our team will schedule a demo shortly.